↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
ack3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ack_3_in_gga3(0_0, N, s_11(N)) -> ack_3_out_gga3(0_0, N, s_11(N))
ack_3_in_gga3(s_11(M), 0_0, A) -> if_ack_3_in_1_gga3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ack_3_in_gga3(s_11(M), s_11(N), A) -> if_ack_3_in_2_gga4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
if_ack_3_in_2_gga4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> if_ack_3_in_3_gga5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
if_ack_3_in_3_gga5(M, N, A, A1, ack_3_out_gga3(M, A1, A)) -> ack_3_out_gga3(s_11(M), s_11(N), A)
if_ack_3_in_1_gga3(M, A, ack_3_out_gga3(M, s_11(0_0), A)) -> ack_3_out_gga3(s_11(M), 0_0, A)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ack_3_in_gga3(0_0, N, s_11(N)) -> ack_3_out_gga3(0_0, N, s_11(N))
ack_3_in_gga3(s_11(M), 0_0, A) -> if_ack_3_in_1_gga3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ack_3_in_gga3(s_11(M), s_11(N), A) -> if_ack_3_in_2_gga4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
if_ack_3_in_2_gga4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> if_ack_3_in_3_gga5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
if_ack_3_in_3_gga5(M, N, A, A1, ack_3_out_gga3(M, A1, A)) -> ack_3_out_gga3(s_11(M), s_11(N), A)
if_ack_3_in_1_gga3(M, A, ack_3_out_gga3(M, s_11(0_0), A)) -> ack_3_out_gga3(s_11(M), 0_0, A)
ACK_3_IN_GGA3(s_11(M), 0_0, A) -> IF_ACK_3_IN_1_GGA3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ACK_3_IN_GGA3(s_11(M), 0_0, A) -> ACK_3_IN_GGA3(M, s_11(0_0), A)
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> ACK_3_IN_GGA3(s_11(M), N, A1)
IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> IF_ACK_3_IN_3_GGA5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> ACK_3_IN_GGA3(M, A1, A)
ack_3_in_gga3(0_0, N, s_11(N)) -> ack_3_out_gga3(0_0, N, s_11(N))
ack_3_in_gga3(s_11(M), 0_0, A) -> if_ack_3_in_1_gga3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ack_3_in_gga3(s_11(M), s_11(N), A) -> if_ack_3_in_2_gga4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
if_ack_3_in_2_gga4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> if_ack_3_in_3_gga5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
if_ack_3_in_3_gga5(M, N, A, A1, ack_3_out_gga3(M, A1, A)) -> ack_3_out_gga3(s_11(M), s_11(N), A)
if_ack_3_in_1_gga3(M, A, ack_3_out_gga3(M, s_11(0_0), A)) -> ack_3_out_gga3(s_11(M), 0_0, A)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACK_3_IN_GGA3(s_11(M), 0_0, A) -> IF_ACK_3_IN_1_GGA3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ACK_3_IN_GGA3(s_11(M), 0_0, A) -> ACK_3_IN_GGA3(M, s_11(0_0), A)
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> ACK_3_IN_GGA3(s_11(M), N, A1)
IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> IF_ACK_3_IN_3_GGA5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> ACK_3_IN_GGA3(M, A1, A)
ack_3_in_gga3(0_0, N, s_11(N)) -> ack_3_out_gga3(0_0, N, s_11(N))
ack_3_in_gga3(s_11(M), 0_0, A) -> if_ack_3_in_1_gga3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ack_3_in_gga3(s_11(M), s_11(N), A) -> if_ack_3_in_2_gga4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
if_ack_3_in_2_gga4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> if_ack_3_in_3_gga5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
if_ack_3_in_3_gga5(M, N, A, A1, ack_3_out_gga3(M, A1, A)) -> ack_3_out_gga3(s_11(M), s_11(N), A)
if_ack_3_in_1_gga3(M, A, ack_3_out_gga3(M, s_11(0_0), A)) -> ack_3_out_gga3(s_11(M), 0_0, A)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
ACK_3_IN_GGA3(s_11(M), s_11(N), A) -> ACK_3_IN_GGA3(s_11(M), N, A1)
IF_ACK_3_IN_2_GGA4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> ACK_3_IN_GGA3(M, A1, A)
ACK_3_IN_GGA3(s_11(M), 0_0, A) -> ACK_3_IN_GGA3(M, s_11(0_0), A)
ack_3_in_gga3(0_0, N, s_11(N)) -> ack_3_out_gga3(0_0, N, s_11(N))
ack_3_in_gga3(s_11(M), 0_0, A) -> if_ack_3_in_1_gga3(M, A, ack_3_in_gga3(M, s_11(0_0), A))
ack_3_in_gga3(s_11(M), s_11(N), A) -> if_ack_3_in_2_gga4(M, N, A, ack_3_in_gga3(s_11(M), N, A1))
if_ack_3_in_2_gga4(M, N, A, ack_3_out_gga3(s_11(M), N, A1)) -> if_ack_3_in_3_gga5(M, N, A, A1, ack_3_in_gga3(M, A1, A))
if_ack_3_in_3_gga5(M, N, A, A1, ack_3_out_gga3(M, A1, A)) -> ack_3_out_gga3(s_11(M), s_11(N), A)
if_ack_3_in_1_gga3(M, A, ack_3_out_gga3(M, s_11(0_0), A)) -> ack_3_out_gga3(s_11(M), 0_0, A)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
ACK_3_IN_GGA2(s_11(M), s_11(N)) -> IF_ACK_3_IN_2_GGA2(M, ack_3_in_gga2(s_11(M), N))
ACK_3_IN_GGA2(s_11(M), s_11(N)) -> ACK_3_IN_GGA2(s_11(M), N)
IF_ACK_3_IN_2_GGA2(M, ack_3_out_gga1(A1)) -> ACK_3_IN_GGA2(M, A1)
ACK_3_IN_GGA2(s_11(M), 0_0) -> ACK_3_IN_GGA2(M, s_11(0_0))
ack_3_in_gga2(0_0, N) -> ack_3_out_gga1(s_11(N))
ack_3_in_gga2(s_11(M), 0_0) -> if_ack_3_in_1_gga1(ack_3_in_gga2(M, s_11(0_0)))
ack_3_in_gga2(s_11(M), s_11(N)) -> if_ack_3_in_2_gga2(M, ack_3_in_gga2(s_11(M), N))
if_ack_3_in_2_gga2(M, ack_3_out_gga1(A1)) -> if_ack_3_in_3_gga1(ack_3_in_gga2(M, A1))
if_ack_3_in_3_gga1(ack_3_out_gga1(A)) -> ack_3_out_gga1(A)
if_ack_3_in_1_gga1(ack_3_out_gga1(A)) -> ack_3_out_gga1(A)
ack_3_in_gga2(x0, x1)
if_ack_3_in_2_gga2(x0, x1)
if_ack_3_in_3_gga1(x0)
if_ack_3_in_1_gga1(x0)
From the DPs we obtained the following set of size-change graphs: